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Abstract. We consider a nano-system connected to measurement probes via non interacting leads. When
the electrons interact inside the nano-system, the coefficient |ts(EF )|2 describing its effective transmission
at the Fermi energy EF ceases to be local. This effect of electron-electron interactions upon |ts(EF )|2 is
studied using a one dimensional model of spinless fermions and the Hartree-Fock approximation. The non
locality of |ts(EF )|2 is due to the coupling between the Hartree and Fock corrections inside the nano-system
and the scatterers outside the nano-system via long range Friedel oscillations. Using this phenomenon, one
can vary |ts(EF )|2 by an Aharonov-Bohm flux threading a ring which is attached to one lead at a distance
Lc from the nano-system. For small distances Lc, the variation of the quantum conductance induced by
this non local effect can exceed 0.1(e2/h).

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 72.10.-d Theory of electronic
transport; scattering mechanisms – 73.23.-b Electronic transport in mesoscopic systems – 71.10.-w Theories
and models of many-electron systems

1 Introduction

In the scattering approach [1–3] to quantum transport, the
measure of the quantum conductance g of a nano-system
requires incoherent electron reservoirs at a temperature T
and metallic contacts (non interacting leads). For a two-
probe measurement and one dimensional (1d) leads, g (in
units of e2/h for spin polarized electrons) is given in the
limit T → 0 by the probability |ts(EF )|2 that an electron
emitted from one reservoir at the Fermi energy EF can
be transmitted to the other reservoir through the nano-
system and its attached leads. If the electron-electron in-
teractions are negligible inside the nano-system, |ts(EF )|2
is a local quantity which is independent of other scatter-
ers that the attached leads can have. If the electrons in-
teract inside the nano-system, the definition of |ts(EF )|2
becomes much more subtle, since the nano-system is no
longer a one body scatterer, but a many-body scatterer.
Fortunately, in the regime of linear response, a many body
scatterer with two attached non interacting leads behaves
when T → 0 as an effective one body scatterer with inter-
action dependent parameters, and its effective one body
transmission determines its quantum conductance. The
possibility of extending the scattering approach to the
linear transport properties of an interacting nano-system

a e-mail: axel.freyn@cea.fr
b e-mail: jean-louis.pichard@cea.fr

has been established in reference [4] (though the effective
transmission has much information about the excitation
spectrum [5]).

A numerical proof of this statement is also given in
reference [6], based on the study of a ring made of a
1d auxiliary lead embedding a nano-system. The elec-
trons were assumed without interaction unless being inside
the nano-system. The persistent current I was numeri-
cally calculated as a function of the flux Φ piercing the
ring. The values of I(Φ) were accurately determined us-
ing the DMRG algorithm [7,8] for an auxiliary lead of
length LL, and extrapolated to their limits as LL → ∞.
The extrapolated values of I(Φ) calculated when an in-
teraction of strength U acts inside the nano-system were
shown to be identical to those given by a one body
scatterer with an interaction dependent transmission co-
efficient |ts(EF , U)|2. The embedding method [6,9–15]
consists in obtaining |ts(EF , U)|2 from the extrapolated
values of I(Φ).

However, an important difference between the many
body problem and the one body problem is pointed out
in reference [16]. Studying two identical interacting nano-
systems in series by the embedding method, one finds that
the value of |ts(EF , U)|2 characterizing the transmission
of the first nano-system is modified by the presence of the
second nano-system. Lc being the length of the ideal wire
coupling the two nano-systems, the correction induced by
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Fig. 1. Considered set-up made of a many body scatterer of
effective transmission |ts|2 with two semi-infinite 1d leads: po-
larized electrons interact only inside the nano-system (two sites
with inter-site repulsion U , hopping term td and site potentials
(gate voltage) VG). A ring is attached at a distance Lc from
the nano-system. The nano-system is described in more details
in Figure 4.

the second nano-system upon the effective transmission
|ts(EF , U)|2 of the first nano-system decays as 1/Lc, with
oscillations of period equal to half the Fermi wave length
λF /2. This decay characterizes also the Friedel oscilla-
tions of the electron density induced by a scatterer inside
a 1d non interacting electron gas. The presence of this
correction to |ts(EF , U)|2 shows us that this is not the in-
teracting nano-system itself, but the nano-system with its
contacts (attached leads and embedded scatterers) which
is described by |ts(EF , U)|2. The decay of this correction
suggests that it is a consequence of the Friedel oscillations
of the conduction electrons inside the coupling wire, which
are caused by the two nano-systems in series.

If the DMRG studies can give accurate results, the
Hartree-Fock (HF) approximation has the merit to give a
simple explanation for this non local transmission. This
was done in reference [17], considering the Hartree and
Fock corrections due to a local interaction inside a nano-
system. In a tight-binding model, the Hartree corrections
modify the site potentials seen by a transmitted electron,
while the exchange terms give corrections to the hopping
integrals. These HF corrections probe energy scales below
EF and length scales larger than the size of the nano-
system inside which the electrons interact. Putting a sec-
ond scatterer at a distance Lc from the interacting nano-
system induces Friedel oscillations of the electron density
inside the nano-system, which change the nano-system
HF corrections. This means that the effective scattering
properties of interacting nano-systems in series are cou-
pled between themselves, exactly as are coupled magnetic
moments by the RKKY interactions [18–21].

This effect was studied in a previous letter [22], as-
suming a set-up which can be convenient for an experi-
mental check of the theory: an infinite 1d tight-binding
model of spin polarized electrons (spinless fermions), em-
bedding two scatterers separated by Lc sites, as sketched
in Figure 1. The first scatterer is the nano-system inside
which the electrons interact, while the second contains
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Fig. 2. Effective transmission |ts|2 as a function of the gate
voltage VG, at half filling (Fermi momentum kF = π/2) and
for a nano-system hopping term td = 0.1. The AB-scatterer
with its attached ring (L′

c = 4, LR = 7) is at Lc = 2 sites from
the nano-system. The interaction strength U is indicated in
the figure. A flux Φ = 0 (•) or Φ = Φ0/2 (×) threads the ring.
The grey areas underline the effect of Φ upon |ts|2.

an attached ring. Hereafter, we refer to the second scat-
terer with its attached ring as the AB-scatterer, since an
Aharonov-Bohm (AB) flux Φ can pierce the ring, its varia-
tions inducing periodic AB-oscillations of the electron den-
sity inside the nano-system. This yields flux dependent HF
corrections for the nano-system, and hence AB-oscillations
of its effective transmission |ts|2. This non local effect upon
|ts|2 induced by a ring attached at Lc sites from the nano-
system is a pure many body effect which was the subject
of reference [22]. In this longer paper, a detailed derivation
of the results summarized in reference [22] is given, with
new analytical and numerical results showing how one can
make this effect very large.

Using the set-up sketched in Figure 1, the non local ef-
fect upon |ts|2 is illustrated in Figure 2. The nano-system
effective transmission |ts|2 is given as a function of a gate
voltage VG applied upon the nano-system, at half filling
(Fermi momentum kF = π/2). For each strength U of a
nearest neighbor repulsion acting inside the nano-system,
two curves give |ts|2 as a function of VG when the ring is
attached near the nano-system (Lc = 2). The first curve
(full circle) has been calculated when there is no flux Φ
threading the ring, while the second one (cross) gives |ts|2
when half a flux quantum Φ0/2 threads the ring. If U = 0,
the two curves are identical. The effect of U consists in
changing the shape of the curves |ts(VG)|2, and in making
a difference underlined by grey areas between the cases
where Φ = 0 and Φ = Φ0/2. Around certain values of VG,
the effect of Φ upon |ts|2 is of order 0.2 for a transmis-
sion |ts|2 ≤ 1. This means that one can make the effect
huge if Lc is small, for well chosen values of the nano-
system parameters. Figure 3 shows how the effect of the
ring upon |ts|2 decays as Lc increases. One can see the
cos(2kFLc)/Lc asymptotic decay with even-odd oscilla-
tions characteristic of Friedel oscillations at half-filling.
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Fig. 3. |ts|2 as a function of the length Lc between the nano-
system and the ring when Φ = 0: the effect of the ring upon |ts|2
(see Fig. 2) decays as Friedel oscillations. HF results (×) and fit
0.2522 + cos(πLC)/LC (solid line), calculated for VG = −0.75
and U = 1.5 (L′

c = 4, LR = 7, kF = π/2, td = 0.1).

In this paper, we explain the origin of the non local ef-
fects upon |ts|2 shown in Figure 2. The paper is divided as
follows. In Section 2, the nano-system Hamiltonian is de-
fined and the HF equations are given when it is embedded
between two semi-infinite ideal leads. One gets two cou-
pled equations which have to be solved self-consistently.
The two equations are explicitly derived when the
nano-system is not in series with another scatterer. A nu-
merical method for having the HF parameters is then de-
fined, which allows us to recover the results of the ana-
lytical derivations and to estimate its convergence when
the size of the leads increases. In Section 3, a simple limit
where the HF parameters take trivial values is studied. In
this limit, one can easily calculate the transmission |ts|2 as
a function of VG at a given strength U of the interaction,
and explain the shape of the curves |ts(VG)|2 shown in
Figure 2. Unfortunately, this limit is also the limit where
the non local effect upon |ts|2 is negligible. For having
large effects, one needs to be in the opposite limit. In Sec-
tion 4, the scatterer with the attached ring (AB-scatterer)
is defined. Its scattering properties are calculated for each
energy E ≤ EF . In Section 5, the oscillations induced by
the nano-system and by the AB-scatterer in the leads are
studied separately, illustrating the phenomena responsible
for the non locality of |ts|2. In Section 6, one considers the
interacting nano-system in series with the AB-scatterer,
and we study the role of the gate potential VG, the Fermi
momentum kF and the hopping term td upon the flux de-
pendence of |ts|2. In Section 7, the implications of the non
locality of |ts|2 upon the total quantum conductance gT

are studied, when the nano-system is in series with the
AB-scatterer between two measurement probes. We give
a short summary in Section 8, underlining the possible
relevance of the many body effect described in this work
for the theory of experiments imaging coherent electron
flow from a quantum point contact in a two dimensional
electron gas.
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Fig. 4. Nano-system with two semi-infinite 1d leads: spin po-
larized electrons interact only inside the nano-system (sites 0
and 1) with inter-site repulsion U and site-potentials V0 =
V1 = VG. The strength of the hopping terms is td inside the
nano-system, tc between the nano-system and the leads, and
th = 1 in the leads.

2 Hartree-Fock description of an interacting
nano-system with non interacting leads

We consider a one dimensional tight-binding model of spin
polarized electrons (spinless fermions), where the particles
do not interact, unless they occupy two nearest neighbor
sites (0 and 1), which costs an interaction energy U . The
two sites 0 and 1, with potentials V0 = V1 = VG, a repul-
sion U and an hopping term td define the nano-system.
We assume that the potential VG can be varied by a gate.
The nano-system Hamiltonian reads

Hs = −td(c†0c1 + h.c.) + VG(n1 + n0) + Un1n0 . (1)

cp (c†p) is the annihilation (creation) operator at site p, and
np = c†pcp. The left (L) and right (R) leads are described
by two Hamiltonians

HL,R
lead = −

∑

p

th(c†p−1cp + h.c.), (2)

where p runs from −∞ to −1 (3 to ∞) for the left (right)
lead. The hopping amplitude in the leads th = 1 sets the
energy scale, the conduction band corresponding to ener-
gies −2 < E = −2 cosk < 2 (k real). The two leads and
the nano-system are coupled by

HL,R
coupling = −tc(c†p−1cp + h.c.) (3)

with p = 2 (0) for the coupling with the right (left) lead.
The Hamiltonian

H = Hs +
∑

J=L,R

(HJ
lead +HJ

coupling) (4)

defines the interacting nano-system coupled with two non
interacting 1d semi-infinite leads.

In the HF approximation, one takes for the ground
state a Slater determinant of one-body wave-functions
ψα(p) of energy Eα < EF = −2 coskF . The ψα(p) are the
eigenfunctions of the Hamiltonian H (Eq. (4)), where the
nano-system is described by an effective one body Hamil-
tonian

HHF
s = −v(c†0c1 + h.c.) + V (n1 + n0) (5)

instead of Hs. HHF
s does not contain the two body term

Un1n0 of Hs (Eq. (1)), but a renormalized hopping term
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v (instead of td), and a renormalized gate potential V (in-
stead of VG). The form of HHF

s results from the near-
est neighbor repulsion acting only between the sites 0
and 1, such that the exchange correction modifies only
the strength of the hopping term td coupling those two
sites, while the site-potentials V0 and V1 have two identi-
cal Hartree corrections, because of the reflection symmetry
p− 1/2 → −p+ 1/2.

For the HF calculations, we proceed in three steps. All
wave-functions ψα(p) of energy Eα ≤ EF are calculated
for arbitrary values of v and V . Then, the expectation
values

〈
c†0c1(v, V )

〉
=

∑

Eα<EF

ψ∗
α(0)ψα(1)

〈
c†0c0(v, V )

〉
=

∑

Eα<EF

ψ∗
α(0)ψα(0) (6)

are evaluated, either analytically or numerically. Eventu-
ally, the values of the two HF parameters v and V are
adjusted till they converge towards the two self-consistent
values which satisfy the coupled integral equations:

v = td + U
〈
c†0c1(v, V )

〉

V = VG + U
〈
c†0c0(v, V )

〉
. (7)

Once the self-consistent values of v and V are numer-
ically obtained from equations (7), the effective trans-
mission amplitude ts of the nano-system at an energy
EF = −2 coskF reads:

ts(U) =
v(1 − e−2ikF )

v2 − e−2ikF − 2V e−ikF − V 2
. (8)

2.1 Analytical form of the HF-equations

For the nano-system with two semi-infinite leads, the two
first steps can be done analytically, while the last step
requires to numerically solve the two coupled integral
equations (7). Let us derive the explicit expression of equa-
tions (7). For simplicity, let us take th = tc = 1.

The states ψα(p) are scattering states of energies
Eα = −2 coskα, which are inside the conduction band
(−2 ≤ Eα ≤ 2) of the leads, and bound states below
(Eα < −2) or above (Eα > 2) this band. The contribu-
tion of the bound states to 〈c†0c1〉 and 〈c†0c0〉 is important,
since they are centered inside the nano-system and decay
exponentially outside.

The wave functions of the conduction band can be
written in the leads as

ψα,+(p) =
1√
2π

{
eikα(p− 1

2 ) + rαe
−ikα(p− 1

2 ) if p ≤ 0
tαe

ikα(p− 1
2 ) if p ≥ 1

ψα,−(p) =
1√
2π

{
e−ikα(p− 1

2 ) + rαe
ikα(p− 1

2 ) if p ≥ 1
tαe

−ikα(p− 1
2 ) if p ≤ 0

(9)

where

rα =
eikα(−1 + v2 − V 2 − 2V cos kα)

1 + 2V eikα + (V 2 − v2)e2ikα

tα =
v(e2ikα − 1)

−1 − 2V eikα + (v2 − V 2)e2ikα
. (10)

There are 4 possible bound states centered on the nano-
system. Their wave functions take the general form:

ψα,β
bs (p) = Aα,β(−1)pαsign(pβ − β

2
)e−Kα,β|p− 1

2 |. (11)

Only two bound states of energies Eα,β = −2 cosh(Kα,β)
can exist below the conduction band. The first (α, β =
0, 1) exists if −(v + V ) > 1 with K0,1 = ln(−(v + V )).
The second (α, β = 0, 0) exists if v − V > 1 with K0,0 =
ln(v − V ).

From equations (9) and (11) the expectation values of
〈c†0c1〉 and 〈c†0c0〉 can be explicitly calculated. The contri-
bution of the conduction band reads

〈
c†0c1

〉

cb
=

∑

q=±

∫ kF

0

ψα,q(0)∗ψα,q(1)dkα

=
F− + 2v(kFV +∆ sin kF )

2π∆2

〈
c†0c0

〉

cb
=

∑

q=±

∫ kF

0

|ψα,q(0)|2dkα

=
F+ + kF (v2 + V 2 +∆2) + 2V∆ sin kF

2π∆2
(12)

respectively, where we have introduced different auxiliary
functions:

∆ = v2 − V 2

f0(±) = arctan
(
v ± (V − 1)
v ± (V + 1)

tan
kF

2

)
,

f± = f0(±)
(
∆2 − (v ∓ V )2

)
,

F± = f+ ± f−. (13)

The contribution of the bound states reads:
〈
c†0c1

〉

bs
=

(
1
2
− 1

2(v − V )2

)
Θ(v − V − 1)

+
(
−1

2
+

1
2(v + V )2

)
Θ(−v − V − 1)

〈
c†0c0

〉

bs
=

(
1
2
− 1

2(v − V )2

)
Θ(v − V − 1)

+
(

1
2
− 1

2(v + V )2

)
Θ(−v − V − 1), (14)

where Θ(x) is the Heaviside step-function.
Using equations (12) and (14) and

〈
c†0c1

〉
=

〈
c†0c1

〉

cb
+

〈
c†0c1

〉

bs〈
c†0c0

〉
=

〈
c†0c0

〉

cb
+

〈
c†0c0

〉

bs
, (15)
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Fig. 5. Effective hopping term v of a nano-system with two
finite 1d leads of respective lengths NL and NR (NL ≈ NR) as
a function of the total length N = NL +NR +2, for kF = π/2,
VG = −1, U = 2, th = tc = 1 and td = 0.1.

one gets an explicit form of the two integral equations (7),
which can be numerically solved for obtaining the self-
consistent values of v and V .

2.2 Numerical method for having the HF parameters

If one includes other scatterers in the leads, to calculate
the analytical form of the HF equations becomes tedious.
It is faster to obtain v and V by an alternative numeri-
cal method, based on the numerical diagonalization of a
one body system of size N , composed of HHF

S coupled to
two finite leads of size NL and NR, with NL ≈ NR and
NR +NL + 2 = N . There are 4 possible cases: NL = NR

or NL = NR + 1 for NL even or odd. Taking consecu-
tive sizes N , N + 1, N + 2 and N + 3, this gives the
4 different curves shown in Figure 5, which converge to-
wards the same asymptotic value v. This asymptotic value
corresponds to the value obtained from the two coupled
integral equations (7) with the explicit form given by equa-
tions (15).

3 Two limits for the Hartree-Fock
approximation

3.1 Tractable limit (td > th, |ts|2 independent
of external scatterers)

In the limit where td is large, such that VG− td 
 EF and
VG + td + U � EF , there is a large interval of values of
VG and EF where the HF parameters read

v = td +
U

2

V = VG +
U

2
. (16)

For showing this, let us consider the case without interac-
tion (U = 0). The one body Hamiltonian H0 = Hs(U =

0) +
∑

J=L,R(HJ
lead + HJ

coupling) gives rise to a N × N
Hamiltonian matrix

H0 =

⎛

⎝
HL

lead HL 0
HT

L H4 HR

0 HT
R HR

lead

⎞

⎠ (17)

in the site basis, where the 4 × 4 matrix

H4 =

⎛
⎜⎝

0 −tc 0 0
−tc VG −td 0
0 −td VG −tc
0 0 −tc 0

⎞
⎟⎠ (18)

describes the nano-system with its coupling to the leads.
Assuming that the two leads have an equal length NL =
NR = L, HL

lead (HR
lead) are the (L− 1)× (L− 1) matrices

describing the left (right) lead of size L (minus its last
(first) site). HL (HR) are (L−1)×4 (4×(L−1)) matrices
with a single non zero matrix element −th describing the
hopping between the lead and its last (first) site.

Let us introduce a N × N orthogonal transformation
O which contains a 4 × 4 matrix

O4 =

⎛
⎜⎜⎝

1 0 0 0
0 1√

2
1√
2

0
0 1√

2
− 1√

2
0

0 0 0 1

⎞
⎟⎟⎠ (19)

acting upon H4, such that

OT
4 H4O4 =

⎛
⎜⎜⎜⎝

0 − tc√
2
− tc√

2
0

− tc√
2
V 0

S 0 − tc√
2

− tc√
2

0 V 0
A + tc√

2

0 − tc√
2

+ tc√
2

0

⎞
⎟⎟⎟⎠ , (20)

where V 0
A = VG + td and V 0

S = VG − td. O leaves
H unchanged otherwise. Let us introduce the operators
dS = (c0 + c1)/

√
2 and dA = (c0 − c1)/

√
2, correspond-

ing respectively to the symmetric (antisymmetric) com-
bination of the nano-system orbitals. nS = d†SdS and
nA = d†AdA. Since n1n0 = nAnS , the HF equations (7)
become in the transformed basis

VA = V 0
A + U

〈
d†SdS

〉

VS = V 0
S + U

〈
d†AdA

〉

vAS = U
〈
d†AdS

〉
, (21)

where vAS = 0, since
〈
d†AdS

〉
=

1
2

(
〈n0〉 − 〈n1〉 +

〈
c†0c1

〉
−

〈
c†1c0

〉)
, (22)

is equal to zero if the system is invariant under the inver-
sion 0 ↔ 1.

The equivalent set-up obtained by the orthogonal
transformation O from the original set-up is sketched
in Figure 6. There are three simple limiting cases: two
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Fig. 6. Equivalent set-up obtained by the orthogonal trans-
formation O from the original set-up drawn in Figure 4. The
nano-system is now made of two sites in parallel connected to
the 2 leads by modified hopping terms ±tc/

√
2. The site cor-

responding to the symmetric (anti-symmetric) orbital has an
energy VS (VA) which is given by equations (23). The hop-
ping term vAS due to exchange is zero when there is reflection
symmetry.
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Fig. 7. Occupation numbers 〈nS〉 (solid lines) and 〈nA〉
(dashed lines) as a function of VG for kF = π/8 and differ-
ent values of td given in the figure. U = 1, tc = th = 1.

correspond to the limit where either VA, VS 
 EF or
VA, VS � EF , such that the two sites of the nano-system
are either totally filled or totally empty. This yields an
effective transmission |ts|2 ≈ 0 at EF . The third case cor-
responds to a site A (anti-symmetric orbital) with an oc-
cupation number 〈nA〉 ≈ 0 (VA � EF ) and a site S (sym-
metric orbital) with 〈nS〉 ≈ 1 (VS 
 EF ). The larger is
td, the larger is the range of values of VG corresponding
to this limit, for a given Fermi energy EF . In that case,
equations (21) give

VA = VG + td + U

VS = VG − td. (23)

Putting in the 4 × 4 matrix given by equation (20) those
HF values VA and VS instead of the bare values V 0

A and V 0
S

defines HHF
4 . Calculating O4HHF

4 OT
4 , one finds for the HF

parameters V and v the values given by equations (16).
Using the analytical form of HF equations given in Sec-

tion 2.1, we have calculated the two occupation numbers
〈nS〉 and 〈nA〉 as a function of VG for different values of
EF = −2 coskF and td. The results are shown assuming
a nano-system well coupled to the leads (tc = th = 1), for
kF = π/8 (Fig. 7) and for kF = π/2 (Fig. 8). One can see
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Fig. 8. Occupation numbers 〈nS〉 (solid lines) and 〈nA〉
(dashed lines) as a function of VG for kF = π/2 and differ-
ent values of td given in the figure. U = 1, tc = th = 1.

that for td � 1, there are large intervals of values of VG for
which 〈nS〉 ≈ 1 and 〈nA〉 ≈ 0. In that case, v and V are
given by equations (16) and it is very easy to obtain the
nano-system transmission |ts|2 at the Fermi energy EF .
For renormalized hopping term v and gate potential V ,
the effective transmission reads

|ts|2 ≈ v

x

(
Γ 2

(v − x)2 + Γ 2
− Γ 2

(v + x)2 + Γ 2

)
, (24)

where

Γ = t2c sinkF

x = V − (t2c − 2) coskF . (25)

If v and V are given by equations (16), one finds:

|ts|2 ≈ ∆

(
Γ 2

(VG − V1)2 + Γ 2
− Γ 2

(VG − V2)2 + Γ 2

)
, (26)

where

∆ =
2td + U

2VG + U − 2(t2c − 2) coskF

V1 = td + (t2c − 2) cos kF

V2 = −td + (t2c − 2) coskF − U. (27)

When one varies VG, equation (26) gives for the transmis-
sion |ts|2 two transmission peaks located at VG = V1 and
V2, and spaced by a large interval 2td+U when td is large.

When tc 
 1, (t2c − 2) cos kF ≈ EF and the nano-
system is very weakly coupled to the leads, with two
levels of energy VG ± td when U = 0. There are two
sharp transmission peaks of width Γ = t2c sin kF 
 1,
the first when EF ≈ VG − td (VG = V1), the second when
EF ≈ VG + td + U (VG = V1). Since one needs an energy
EF for putting an electron outside the nano-system, and
an energy VG − td to put an electron inside the empty
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nano-system, or VG + td +U inside the nano-system occu-
pied by another electron, one recovers the usual Coulomb
Blockade, where the nano-system has a transmission peak
when it is indifferent for an electron to be inside or outside
the nano-system.

When tc → 1, the nano-system becomes strongly cou-
pled to the leads, the peak width Γ is broader and the
two values of VG for which the transmission is large are
shifted by an amount equal to EF /2.

This double peak structure is shown in Figure 9 when
td � th and tc = th = 1. It agrees with the curve given
by equation (26). In contrast, this approximation totally
fails to describe the single peak structure occurring when
td = 0.1, as shown in Figures 9 and 10.

When td is large, the symmetric site S of potential
VS = VG − td is far from the anti-symmetric site of po-
tential VA = VG + td + U . If the nano-system is empty

(|ts|2 ≈ 0) and if one varies EF for a given value of VG,
or VG for a given value of EF , one first fills the sym-
metric state, then the anti-symmetric one. This gives two
transmission peaks. When the two potentials VA and VS

are far from EF , 〈nA〉 and 〈nS〉 are either 0 or 1, and
only huge external Friedel oscillations could enter inside
the nano-system and vary |ts|2. In that case, the nano-
system occupation number NS = 〈nA〉 + 〈nS〉 is locked
to values 0, 1 or 2, which cannot be changed by external
Friedel oscillations. This makes the sensitivity of |ts|2 to
external scatterers very negligible in that case. If one of
the two renormalized potentials VA and VS is near EF ,
only the component of external Friedel oscillations with
the right symmetry can go through the equivalent site A
or S of the same symmetry. Even in that case, the change
of |ts|2 by an external scatterer cannot be very large. The
limit where the solution of HF equations is straightforward
is also the limit where the nano-system transmission is
almost independent of external scatterers.

3.2 Non local Limit (td < th, |ts|2 dependent
of external scatterers)

When td is small, the symmetric site S of potential VG−td
and the anti-symmetric site A of potential VG +td +U can
be put together near EF by a suitable strength of VG. In
that case, the two transmission peaks merge into a single
one, as shown in Figures 9 and 10 for td = 0.1. Look-
ing in Figures 7 and 8, one can see that 〈nA〉 ≈ 〈nS〉
take intermediate values between 0 and 1 around this sin-
gle transmission peak, the potentials VA and VS being
near EF for the same values of VG. This is the interesting
limit where one can strongly vary 〈nA〉 and 〈nS〉 by exter-
nal scatterers, the induced Friedel oscillations being able
to enter inside the nano-system. Large variations of the
HF parameters can be expected in this limit, and hence
large changes of the effective transmission |ts|2. If the ex-
ternal scatterer is made of an attached ring, the induced
Friedel oscillations entering inside the nano-system can be
changed by an AB flux threading the ring, and |ts|2 can
exhibit large AB oscillations.

4 Aharonov-Bohm scatterer

The AB-scatterer sketched in Figure 1 contains an at-
tached ring, such that it can induce flux dependent Friedel
oscillations in the lead when an AB flux is varied through
the ring. Its topology requires two 3-lead contacts (3LC).
A 3LC is made of 4 coupled sites indicated by black circles
in Figure 1, and is described by a local Hamiltonian

HP =
3∑

p=1

−tp(c†P cp + h.c), (28)

P denoting the central site and the sum p being taken
over its 3 neighbors. The hopping terms are taken equal
tp = th = 1. The first 3LC allows us to attach a verti-
cal lead to the horizontal lead, the second one to attach
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the ring to this vertical lead. Lc is the number of sites
between the upper 3LC and the nano-system. Varying
Lc, one can study the influence of the AB scatterer upon
the effective transmission |ts|2 of the nano-system. L′

c and
LR are respectively the numbers of sites between the two
3LCs (length of the vertical lead) and of the attached ring
(length of the ring without the three sites of the lower
3LC), as shown in Figure 1. A 3×3 matrix SP (k) describes
the scattering by a 3LC at an energy E = −2 cosk:

SP (k) =

⎛

⎝
sd so so

so sd so

so so sd

⎞

⎠ (29)

where

sd =
−eik

3eik − 2 cosk

so =
2i sink

3eik − 2 cosk
. (30)

The reflection amplitude of an incoming electron of the
vertical lead by the ring threaded by a flux Φ reads

rR(ϕ) =
hk(ϕ) − sin(kLR)

−hk(ϕ) + e2ik sin(kLR)
, (31)

where
hk(ϕ) = 2eik(cos(kLR) − cosϕ) sin k (32)

ϕ = 2πΦ/Φ0, Φ0 being the flux quantum.
The reflection and transmission amplitudes of an elec-

tron moving in the horizontal lead by the AB-scatterer
read

rAB(k) =
−e2ik − e2ikL′

crR(ϕ)
2e2ik − 1 + rR(ϕ)e2ik(L′

c+1)
(33)

tAB(k) =
2i sinkeik(1 + e2ikL′

crR(ϕ))
2e2ik − 1 + rR(ϕ)e2ik(L′

c+1)
. (34)

5 Friedel oscillations and particle-hole
symmetry

If one puts a symmetric nano-system in series with an
AB-scatterer, the inversion symmetry is broken, and the
potentials V0 
= V1. In that case, one has to calculate the
values v, V0 and V1 of the HF parameters satisfying the
three coupled HF equations

v = td + U
〈
c†0c1(v, V0, V1)

〉

V0 = VG + U
〈
c†1c1(v, V0, V1)

〉

V1 = VG + U
〈
c†0c0(v, V0, V1)

〉
, (35)

instead of the two HF equations (7) valid when V0 = V1.
The non local effect is a consequence of the correc-

tions to 〈c†0c1〉, 〈c†0c0〉 and 〈c†1c1〉 which are induced inside
the nano-system by the AB scatterer. In the general case,
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Fig. 11. Even-odd oscillations of 〈c†pcp+1〉 towards the asymp-
totic value 1/π, induced inside the leads by the interact-
ing nano-system for kF = π/2, U = 1, VG = −U/2 and
tc = t = 1. The dashed and solid lines give two asymptotic
fits 1/π + b cos(πp + c)/p with (b = 0.04151, c = π) and
(b = 0.14776, c = 0) for td = 1 (+) and td = 0.1 (×) re-
spectively.

the AB scatterer and the nano-system induce at a site p
Friedel oscillations of the density 〈c†pcp〉 and similar oscil-
lations of the correlation function 〈c†pcp+1〉. Let us illus-
trate the effect of each scatterer inside the attached leads
when there is particle-hole symmetry. In this particular
case, the density stays uniform, 〈c†pcp〉 = 1/2 everywhere
and there are no Friedel oscillations of the density. But the
effect of the AB scatterer upon the nano-system transmis-
sion |ts|2 persists, because of the exchange contribution,
and one just needs to study 〈c†pcp+1〉. Particle-hole sym-
metry occurs at half-filling (kF = π/2) when one takes a
gate potential VG = −U/2 which exactly compensates the
Hartree contributions U/2, such that V0 = V1 = 0.

5.1 Interaction dependent oscillations induced
by the nano-system

In a case where particle-hole symmetry yields a uniform
density, the usual Friedel oscillations are absent, and the
exact form of 〈c†pcp+1〉 is given in reference [17] for VG =
−U/2 and td = 1. It has an asymptotic behavior which
reads

〈
c†pcp+1

〉
≈ a+ b

cos(2kF p+ c)
p

, (36)

where the asymptotic value a = sin kF /π and the phase
c = 0 at kF = π/2. This gives even-odd oscillations with
a 1/p-decay towards the asymptotic value 1/π which are
shown in Figure 11 for td = 1 and td = 0.1. As expected,
the amplitude b = 0.14776 is larger when td = 0.1 than
when td = 1 (b = 0.04151). The asymptotic form given by
equation (36) characterizes also the Friedel oscillations of
〈c†pcp〉 when particle-hole symmetry is broken.
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Fig. 12. Flux dependent oscillations of 〈c†pcp+1〉 towards the
asymptotic value 1/π, induced by an AB scatterer with a ring
of size LR = 6, for Φ = Φ0/2 (+) or Φ = 0 (×) (kF = π/2
and L′

c = 4). The dashed and solid lines give two asymptotic
fits 1/π + b cos(πp + c)/p with (b = 0.09983, c = π) and (b =
0.02746, c = π) for Φ = Φ0/2 and Φ = 0 respectively.
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Fig. 13. Flux-dependent oscillations of 〈c†pcp+1〉 towards the
asymptotic value 1/π, induced by an AB scatterer with a ring
of size LR = 7 for Φ = Φ0/2 (+) and Φ = 0 (×) respectively ,
for kF = π/2 and L′

c = 4. The dashed and solid lines give two
asymptotic fits 1/π+b cos(πp+c)/p with (b = 0.027997, c = 0)
and (b = 0.11029, c = 0) for Φ = Φ0/2 and Φ = 0 respectively.

5.2 Flux dependent oscillations induced by the AB
scatterer

The AB scatterer induces also flux dependent oscilla-
tions of 〈c†pcp+1〉 around it, even though 〈c†pcp〉 = 1/2
everywhere if kF = π/2. These oscillations have also the
asymptotic behavior given by equation (36), as shown in
Figures 12 and 13 for even and odd sizes LR of the ring
(LR = 6 and 7). At kF = π/2, the scattering matrix el-
ements of the AB-scatterer given by equations (33) and
(34) are independent of Φ when LR is even, and depend
on Φ when LR is odd. However 〈c†pcp+1〉 oscillates and
varies as a function of Φ both for even and odd values of
LR, as shown in Figures 12 and 13.
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Fig. 14. Effective transmission |ts|2 as a function of the gate
voltage VG, at a filling 1/8 (Fermi momentum kF = π/8) and
a nano-system hopping term td = 0.1. The AB-scatterer with
its attached ring (L′

c = 4, LR = 7) is at Lc = 2 sites from the
nano-system. The interaction strength U is indicated in the
figure. A flux Φ = 0 (•) or Φ = Φ0/2 (×) threads the ring. The
grey areas underline the effect of Φ upon |ts|2.

6 Role of the AB flux upon the nano-system
transmission |ts|2

When the two scatterers are put in series, the oscillations
of the first interfere with the oscillations of the second,
and the solutions of equations (35) have to be determined
self-consistently. To calculate analytically as in Section 2.1
〈c†0c1〉, 〈c†0c0〉 and 〈c†1c1〉 becomes complicated in the pres-
ence of the AB scatterer. It is simpler to obtain v, V0

and V1 using the numerical method given in Section 2.2.
Once v, V0 and V1 are known, the effective transmission
amplitude ts at an energy E = −2 cosk is given by

ts(k) =
−2ie2ikt2cv sin k
F (V0)F (V1) − v2

, (37)

where F (V ) = 2 cosk + V − eikt2c .
For having large effects of the AB flux Φ upon |ts|2,

we have taken a small value td = 0.1 for the nano-system
hopping term. The results are shown as a function of VG

in Figure 14 for kF = π/8. The ring is attached Lc = 2
sites away from the nano-system. The effect of Φ upon
|ts|2 is indicated in Figure 14 as in Figure 2, by grey areas
between the curves |ts(VG)|2 obtained with Φ = 0 and
Φ = Φ0/2. The effect can be seen, but remains small for
kF = π/8. The period λF /2 = 8 of the Friedel oscillations
being larger than the nano-system size, it is likely that a
stronger effect occurs if this period is reduced and becomes
of the order of the nano-system size, when λF /2 = 2.
This is confirmed in Figure 2 which we have put in the
introduction. Those large effects are the result of the Φ-
dependence of v, V0 and V1. The effect being particularly
large in Figure 2 when VG = −1 and U = 2, we show in
Figure 15 the corresponding AB oscillations characterizing
|ts|2 and v when Φ varies through the ring. As shown in
Figure 2, |ts|2 takes its largest value when VG = −U/2, as



288 The European Physical Journal B

0.5

0.525

0.55

0.575

0.6

0.625

vv

0 0.5 1 1.5 2 2.5 3

φ/φ0φ/φ0

0.65

0.7

0.75

0.8

|t S
|2

|t S
|2

Fig. 15. Effective transmission |ts|2 (upper figure) and renor-
malized hopping v (lower figure) as a function of Φ/Φ0, for
kF = π/2, U = 2 and VG = −1. Same values as in Figure 2
(Lc = 2, L′

c = 4 and LR = 7 and td = 0.1). Particle-hole
symmetry (kF = π/2, VG = −U/2) gives V0 = V1 = 0.

far as U is not too large and does not split the transmission
peak. At kF = π/2, this value of VG yields particle-hole
symmetry. Therefore, the transmission is maximum when
VG compensates the Hartree terms, such that V0 = V1 = 0
without the AB-scatterer, the only source of scattering
being due to the hopping term v 
= th. One can also see
in Figure 2 that the largest dependence of |ts|2 upon Φ
occurs for VG = −U/2 at kF = π/2.

The role of td upon the strength of the non local effect
is illustrated in Figure 16 for kF = π/2 and U = 1. The
dependence of Φ upon |ts|2 cannot be seen at the used
scale when td = 1. This is also a value of td where equa-
tion (26) gives a good approximation of |ts|2 (see Fig. 9).
When td decreases, the grey areas underlining the role of
Φ upon |ts|2 increase around VG = −U/2, where there is
particle-hole symmetry. Of course, |ts|2 → 0 as td → 0.

7 Quantum conductance gT

In the two probe geometry described by Figure 1, the
quantum conductance gT of the nano-system and the AB-
scatterer in series is given by Landauer formula which
reads gT = |tT (EF )|2 (in units of e2/h) in the limit where
the temperature T → 0. Using the HF approximation,
the nano-system becomes an effective one body scatterer
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Fig. 16. Effective transmission |ts|2 as a function of VG for
different values of the nano-system hopping term td indicated
in the figure. kF = π/2, Lc = 2, L′

c = 4, LR = 7, U = 1. A flux
Φ = 0 (•) or Φ = Φ0/2 (×) threads the ring. The grey areas
underline the effect of Φ upon |ts|2.
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Fig. 17. Quantum conductance gT of the nano-system and
the AB-scatterer in series as a function of Φ/Φ0, when U = 0
(dotted line) and U = 1 (solid line). Lc = 4, LR = 7, L′

c =
6, VG = −0.5 and kF = π/2. The AB-oscillations occurring
without interaction (sin(kF LR) �= 0) are strongly increased
when U = −2VG.

when T → 0 and the total transmission amplitude tT (EF )
is given by the combination law valid for one body scat-
terers:

tT (EF ) = ts(EF )
eikF Lc

1 − r′s(EF )rAB(EF )e2ikF Lc
tAB(EF ).

(38)
r′s(EF ) (rAB(EF )) is the reflection amplitude of the nano-
system (of the AB-detector) at EF . Because rAB(EF )
and tAB(EF ) depend in general on Φ, gT (EF ) exhibits
AB-oscillations even without interaction or if Lc is very
large, limits where ts(EF ) and r′s(EF ) are independent of
Φ. However, when the electrons interact inside the nano-
system and if Lc is not too large, ts(EF ) and r′s(EF ) ex-
hibit also AB-oscillations which can be important around
certain values of VG and which can strongly modify the
AB-oscillations of the total conductance gT . This is shown
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Fig. 18. gT as a function of Φ/Φ0, when U = 0 (dotted line)
and U = 1 (solid line). Lc = 4, LR = 6, L′

c = 5, VG = −0.5 and
kF = π/2. Without interaction, there are no AB-oscillations
(sin(kF LR) = 0). The interaction inside the nano-system in-
creases gT when U = −2VG and yields AB-oscillations.

in Figure 17 for a case where the AB-oscillations of gT are
weak without interaction, and become important when
the electrons interact inside the nano-system. However,
since our model depends on many parameters, it is diffi-
cult to draw a simple conclusion. There are also values of
those parameters for which the AB-oscillations are large
without interaction, the interaction reducing gT and its
oscillations.

In our model, there are also special cases where
sin(kFLR) = 0, such that the ring is perfectly reflecting
and the AB-scatterer becomes independent of Φ at EF .
We show such a case in Figure 18 where kF = π/2 and
LR = 6, for which the interaction increases the value of
gT (the Hartree terms compensating the value of VG when
U = −2VG) and yields AB-oscillations which are a pure
many body effect. This is because the AB-scatterer is inde-
pendent of Φ only at EF , but not below EF . Therefore the
HF parameters, and hence ts(EF ) and r′s(EF ), have AB-
oscillations which are responsible for the AB-oscillations
of gT , while tAB(EF ) and rAB(EF ) are independent of Φ
for kFLR = nπ.

8 Conclusion

In summary, we have found an effect of electron-electron
interactions upon quantum transport, using the scattering
approach to transport and the Hartree-Fock approxima-
tion. The study was restricted to a temperature T → 0, for
1d spin polarized electrons. We have shown that the HF
description of a double site nano-system becomes trivial if
td > th, while the electron density inside the nano-system
can become very sensitive to external scatterers if td < th.
This is also if td < th that it becomes possible to strongly
vary the effective nano-system transmission by external
scatterers. The external scatterer which we have consid-
ered contains a ring, and can give rise to flux dependent
Friedel oscillations if the flux through the ring is varied.
We have shown that those long range Friedel oscillations

can induce AB oscillations of the effective transmission,
though the ring is attached at a distance Lc from the
nano-system. As explained in reference [17], this non local
effect vanishes if the distance between the nano-system
and the external scatterer exceeds the thermal length LT

(length upon which an electron propagates at the Fermi
velocity during a time �/kT ).

Let us review what we know concerning the validity of
the HF approach for the considered nano-system. In refer-
ence [16], two identical nano-systems in series were exactly
studied using the DMRG algorithm. In reference [17],
where the same set-up was studied using the HF approxi-
mation, we have shown (see Fig. 2 of Ref. [17]) that the HF
value for the transmission of a single nano-system (where
the electrons interact between Ns = 2 sites only) coincides
with the DMRG value when U < 1, a negligible error being
only visible when U > 1. Nevertheless, the HF behavior
differs more and more from the exact DMRG solution, as
Ns increases. In reference [23], one can see this difference
for nano-systems with more than 2 sites (up to Ns = 16
sites). For two nano-systems (with Ns = 2 sites) in series,
the HF theory reproduces the DMRG values for U < 1,
but clearly underestimates the magnitude of the non lo-
cal effect for U > 1 (see Fig. 11 of Ref. [17]). Both the
HF and DMRG approaches give a decay of the non local
effect when U becomes larger (U > 5). Eventually, using
the NRG algorithm [24], we can confirm the HF values of
the occupation numbers 〈nS〉 and 〈nA〉, for Ns = 2 and
for a temperature T → 0.

It will be of course very interesting to observe this
many-body effect in a transport measurement. As it is well
known, the strength of the interaction becomes more im-
portant when the electron density is reduced, the Coulomb
to kinetic energy ratio (factor rs) becoming large. A pos-
sibility is to take for the interacting nano-system a quan-
tum dot where the electron density can be reduced by an
electrostatic gate, creating a small region of large factor
rs embedded between two larger regions of larger elec-
tron density. To have strictly 1d leads with negligible
electron-electron interactions is certainly not realistic. If
one uses semi-conductor heterostructures, to be outside
the Luttinger-Tomonaga limit requires to take at least
quasi-1d leads, if not 2d electron gases (2DEGs) of high
enough densities. If the leads become two dimensional,
the non local effect should have a faster decay (1/L2

c, in-
stead the 1/Lc) with λF /2 oscillations. If the leads remain
quasi-1d, the decay will be slower.

Eventually, let us mention transport measure-
ments [25–27] imaging coherent electron flow from a quan-
tum point contact (QPC) where the non local effect in-
duced by electron-electron interaction could play a role.
They are made using a 2DEG created in a GaAs/AlGaAS
heterostructure. A QPC cut the 2DEG in two parts, and
a charged AFM tip can be scanned around the QPC. The
QPC conductance g is measured as a function of the AFM
tip position. When g takes a low value, the QPC is almost
closed and the electron density is low around it, making
very likely non negligible interaction effects. Let us note
that such effects are believed to be crucial for the observed
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0.7 (2e2/h) structure [28]. In the case of references [25–27],
the QPC is biased such that its conductance is on the first
conductance plateaus (g ≈ 1, 2, 3 in units of 2e2/h). In
that case, the QPC provides an interacting nano-system,
while the external scatterer is given by the charged tip
which creates a local depletion region in the 2DEG di-
rectly below it. It is observed that g is changed when the
tip is scanned around the QPC, the change δg(L) being
of order of a fraction of 2e2/h and decaying [25] as 1/L2

with the distance L between the QPC and the tip. More-
over, a 2d plot of δg(L) as a function of the tip position
shows [25] fringes spaced by half the Fermi wave length
λF /2. Therefore, δg(L) has exactly the behavior which
one can expect if it is related to the mechanism described
in this work, i.e. the behavior of Friedel oscillations in two
dimensions. We leave to a further work a study of this
2d set-up, for knowing if a quantitative description of the
measured δg(L) does not require to go beyond the non in-
teracting electron picture, making necessary to take into
account our non local effect, at least when g is on the low
conductance plateaus.
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